digidtyle

جداسازی هیدروكربن های استفاده شده در پلیمر غشاها

جداسازی هیدروكربن های استفاده شده در پلیمر غشاها

جداسازی-هیدروكربن-های-استفاده-شده-در-پلیمر-غشاها

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:74

فهرست مطالب :

3-1-3-9- وابستگي دماي نفوذ پذيري هيدروكربن در پليمري لاستيكي.. 1

4-1-3-9- پلي تري متيل سيليل پروبين به عنوان يك ماده غشايي براي جداسازي هيدروكربن ها و حذف آنها از مخلوط هاي گاز 5

2-3-9 كاربرد پليمرهاي لاستيكي براي جدا سازي تبخيري هيدروكربن ها از محلول هاي آبي.. 6

4-9 جداسازي و حذف هيدروكربن ها با استفاده از غشا هاي مبتني بر پليمرهاي شيشه اي.. 9

1-4-9 جدا سازي اولفين ها و پارافين ها 9

1-1-4-9 اثر پيوند هاي اشباع نشده براندازه مولكول هاي اولفين و بر توانايي اولفين ها براي ورود به بر هم كنش هاي ويژه با قالب غشا 10

2-1-4-9 اثر تركيب شيميايي پليمرهاي شيشه اي بر ويژگي هاي جداسازي گاز آنها به هيدروكربن ها 12

1-2-1-4-9 پلي ايميدها به عنوان مواد غشايي براي جداسازي اولفين ها و پارافين ها 15

2-2-1-4-9- اكسيدهاي پلي فنيلن به عنوان مواد غشايي براي جدا سازي اولفين ها و پارافين ها 22

3-1-4-9- وابستگي فشار نفوذ پذيري و گزينش پذيري هيدروكربن در پليمرهاي شيشه اي.. 25

4-1-4-9 وابستگي دماي نفوذ پذيري و گزينش پذيري هيدروكربن در پليمرهاي شيشه اي.. 28

5-1-4-9- سينتيك فرآيند نفوذ. 29

2-4-9 جداسازی هیدرکربن های آروماتیک ، شبه حلقوی و آلیفاتیک... 30

1-2-4-9- مشکل جداسازی هیدروکربن های آروماتیک، شبه حلقوی و آلیفاتیک... 30

1-1-2-4-9 هیدروکربن های آروماتیک ـ شبه حلقوی.. 31

2-1-2-4-9 هیدروکربن های آروماتیک ـ آلیفاتیک/ آروماتیک... 32

3-1-2-4-9 ایزومرها 33

2-2-4-9 مؤلفه پخش عامل جداسازی.. 35

1-2-2-4-9 وابستگی مؤلفه پخش عامل جداسازی به اندازه مولکول نفوذ کننده 35

2-2-2-4-9 عوامل تعیین کننده سختی کل ماکرومولکول ها 37

3-2-2-4-9 اثر افزایش سختی سیستم پلیمر بر مؤلفه پخش عامل جداسازی.. 38

3-2-4-9 مؤلفه جذب عامل جداسازی.. 42

1-3-2-4-9 افزایش مؤلفه جذب عامل جداسازی با وارد کردن یک پذیرنده الکترون توزیع شده همگن به زمینه پلی ایمید  43

2-3-2-4-9 افزایش مؤلفه جذب عامل جداسازی با وارد کردن گروههای پذیرنده الکترون π به پلیمر. 44

5-9 جداسازی صنعتی هیدروکربن ها از مخلوط هایشان با گازها و بخارهای مختلف.. 50

مقدمه :

جدایی هیدروکربن ها و تفکیک آن ها از ترکیبات مایع و گازی متعدد اهداف مهم صنایع شیمیایی و پتروشیمی می باشد . این اهداف را می توان با استفاده از تکنولوژی جذب، تصفیه یا تبرید به دست آورد. در بیست سال گذشته این روش های سنتی با تکنولوژی غشاء تکمیل شد. مجموعه ای از اطلاعات ادبی و انحصاری تهیه شده تا کنون نیاز به عمومیت بخشیدن دارد (حدود 2000 سند در طی 20 سال گذشته) جریان اطلاعات دوره ای و انحصاری درباره ی مساله تفکیک هیدروکربن ها در حال افزایش است. بخش اعظمی از این اطلاعات را مقالات موجود در مجلات احاطه کرده است در حالیکه سهم حقوق انحصاری فقط حدود یک سوم می باشد . این حالی از این مساله است که در حال حاضر محققان توجه علمی به مساله دارند نه توجه تجاری.

تکنیک های جدا سازی غشاء دارای چند بخش می باشند که معیارهای متفاوتی دارند، و یکی از این معیارها ماده ی ساخت لایه ی گزینش پذیر غشا می باشد. مواد ساخت این لایه را می توان به گروه های زیر تجزیه کرد: پلیمرها (41% در کل جریان اطلاعات)، مواد غیر آلی (3707 %)، مایعات (408%) به مواد مرکب آلی و غیر آلی (302%)، و مواد دیگر (1301%).

حقیقتی قابل توجه علاقه ی رو به افزایش محققان غشاهای غیر آلی می باشد . پیشرفتی عمده در توسعه ی غشاهای غیر آلی (زئولیت ها، آلومینیوم اکسید، سرامیک ها، سیلیکا، فلزات مختلف، اکسیدهای فلزی و غیره) در ده سال گذشته صورت گرفته است.

اما استفاده از پوسته ها با لایه های گزینش پذیر غیر آلی در حال حاضر در مرحله ی بررسی شدید است و هنوز راه درازای تا استفاده ی تجاری دارد. سهم حق انحصاری اطلاعات در این زمینه فقط 1909% است.

غشاهایی که دارای یک لایه ی گزینش پذیر بر اساس پلیمر می باشند، بیشترین بخش را در جریان اطلاعات در بر گرفته اند. بر حسب سهم در این جریان کلی اطلاعات مواد پلیمری را می توان به شکل زیر مرتب کرد: پلی آمیدها (153%)، پلی اولفین ها (802)%، پلی سولفون ها (702%)، پلیمرهای در بردارنده ی فلوئورین (408%) و پلیمرهای اروگانسیلیکون (701%)، پلی آمیدها بزرگترین گروه پلیمر ها در آثار و ادبیات دوره ای و انحصاری می باشند. با گذشت زمان علاقه به استفاده از پلی آمیدها توسط محققان (بالاخص در ژاپن) تعجب آور نیست. اسناد زیادی را نیز می توان در رابطه با جریان اطلاعاتی که به استفاده از مواد پلیمری لاستیک مانند شامل پلی سیلوکسان ها، اشاره می کند ؛ پیدا کرد، که در حقیقت حاکی از این است که استفاده ی عملی از این مواد ممکن است نوید بخش باشد.

مواد لایه ی انتخابی غشاء که در اطلاعات بیشتر از بقیه وجود دارند، پلیمرها می باشند. پلیمرهای استفاده شده یا شیشه ای هستند و یا لاستیکی . بنابراین بررسی نظم و ترتیب وابسته به شیمی فیزیکی انتقال جرم هیدروکربن در پوسته های پلیمری اهمیت زیادی دارد.

2-9- ملاحظات کلی:

نظم و ترتیب وابسته به شیمی فیزیکی تراوش هیدروکربن در غشاهای مبنی بر پلیمرهای شیشه ای و لاستیکی = تفاوت کیفی زیادی در مکانیزم های نفوذ نافذ وزن مولکولی (MW) پائین در پلیمرها در درجه حرارت ناپایدار بالا و پائین شیشه ، Tg ، پلیمرها وجود دارد. این تفاوت فقط به علت این حقیقت است که جا به جایی واحدهای ساختاری مولکولهای بزرگی که مسئول انتقال مولکولهای نافذ می باشند در سطوح بالای مولکولی ماتریس پلیمر روی می دهد. در زمانیکه T>Tg باشد. فرآیند نفوذ در میانه با تعادل یا نزدیک تعادل بسته بندی زنجیره ها روی می دهم و حجم کسری آزاد VF ، در پلیمر معادل با حجم کسری آزاد در پلیمر می باشد که با توانایی حرکت گرمایی واحدهای ساختاری مولکولهای بزرگ VF(T) مشخص می شود یعنی VF=VF(T) در زمانیکه TVF(T) باشد .فرض می شود که در این حالت VF=VF(T)+VF(V) باشد. در جائیکه VF(V) حجم کسری آزاد مسئول مشخصه ی بی تعادلی ماتریس پلیمر می باشد .

میزان نفوذ پذیری ، نفوذ کننده هایی با MW پائین در پلیمرها با عوامل ترمودینامیک (جذب کننده) و هم جنبشی (دفع کننده) مشخص می شود.

9.2.1- عامل ترمودینامیک نفوذ پذیری:

در غیاب بر هم کنش های خاص پلیمر/ نفوذ کننده ، میزان انحلال پذیری نفوذ کننده بیشتر بوسیله ی ماهیت شیمیایی آن مشخص می شود و به قابلیت انقباض آن بستگی دارد که با درجه حرارت جوش (Tb)، درجه حرارت بحرانی (Tcr)، یا ثابت لنارد – جونز (Lennard –Jones) (Î/k) نمایش داده می شود. مشخص است که در مجموعه های هیدروکربن، افزایش در قابلیت انقباض همراه با افزایش موازی در اندازه ی موکلولها می باشد. بنابراین تعجب آور نیست که هم در پلیمرهای لاستیکی و همه شیشه ای، همبستگی های قابلیت انقباض هیدروکربن در پلیمرها با قابلیت انقباض و اندازه ی مولکولهای هیدروکربن مشاهده می شود.

جهت تجزیه و تحلیل میزان جذب نفوذ کننده ها ، شامل هیدروکربن ها ، در پلیمرهای شیشه ای، مدل جذب به روش دو گانه بیشترین استفاده را دارد. برای تعدادی از پلیمرهای شیشه ای، همبستگی های بین ثابت های مدل جذب به شیوه دوگانه و قابلیت انقباض هیدروکربن ها به وجود آمده اند. وابستگی درجه حرارت ثابت های مدل جذب به شیوه دو گانه و قابلیت انقباض هیدروکربن ها به وجود آمده اند. وابستگی درجه حرارت ثابت های مدل با استفاده از معادله ی ونت – هوف (Vant – Hoff) شرح داده می شود، در جائیکه توان شامل حرارت جذب نفوذ کننده DHs می باشد. این مقدار معمولاً به حرارت انقباض نفوذ کننده بستگی دارد. DHcond: DHs=Dhcond+DH1، در جائیکه DH2 آنتالپی مولی جزئی انحلال نفوذ کننده در پلیمر می باشد، DH2=[Dg1/T)d(1/T]c، DG1 انرژی آزاد مولی جزئی انحلال نفوذ کننده در پلیمر می باشد. جذب هیدروکربن هایی که به آسانی منقبض می شوند، ارزش های منفی گرمای جذب را به عنوان نتیجه ای از ارزش های منفی گرمای انقباض آنها، نمایان می کند.

یک همبستگی خطی بین انحلال گازهای متعدد در پلیمرهای شیشه ای و فاصله بین زنجیره های مولکولها با استفاده از تجزیه و تحلیل ساختاری اشعه – x ایجاد شده است. انحلال گازها، شامل هیدروکربن های پائین تر، با این فاصله و مسافت افزایش می یابد به طور مشابه دریافته شده است که انحلال گازها در پلیمرهای شیشه ای با کسر مولی حجم آزاد پلیمر افزایش می یابد . گزارش شده بود که ثابت اشباع روش لانگ موئیر (Langmuir) به حجم آزاد قابل دسترسی پلیمر بستگی دارد و این حجم آزاد قابل دسترسی همین پلیمر با افزایش اندازه ی مولکول نفوذ کننده ، کم می شود.

انحلال هیدروکربن ها در پلیمرهای لاستیکی را می توان با جزئیات بیشتر با استفاده از چند تئوری انحلال با استفاده از معیارهای مختلف میل ترکیبی و کشش ترمودینامیک شرح داد، که در بین اینها تئوری فلوری – هوگنیز (Flory – Huggins) از همه مشهورتر است. ا

توجه : فایل بالا دارای پشتیبانی و امکان پیگیری است که با کلیک بر روی (دریافت فایل) نمایش داده خواهد شد

با تشکر از انتخاب شما